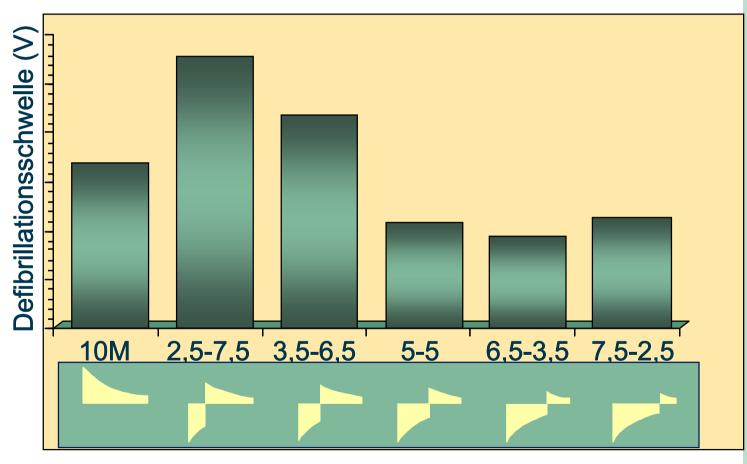

Biphasische Defibrillation mit niedriger Energie

Überblick über Technologie und klinische Effizienz



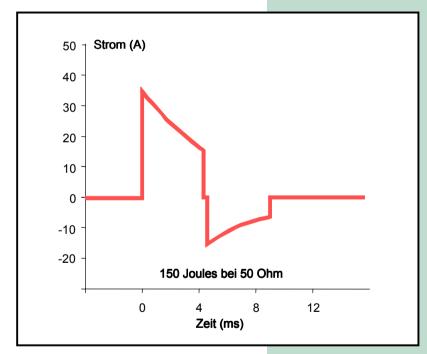
Hintergrundinformation zur biphasischen Defibrillation

- Tier- und Zellversuche in den 80ern:
 - Reduktion der Defibrillationsschwelle
 - Impulsform beeinflusst Defibrillationserfolg
- Derzeitige Anwendung:
 - Implantierbare Defibrillatoren
 - Externe Defibrillatoren

Form des Impulses ist entscheidend

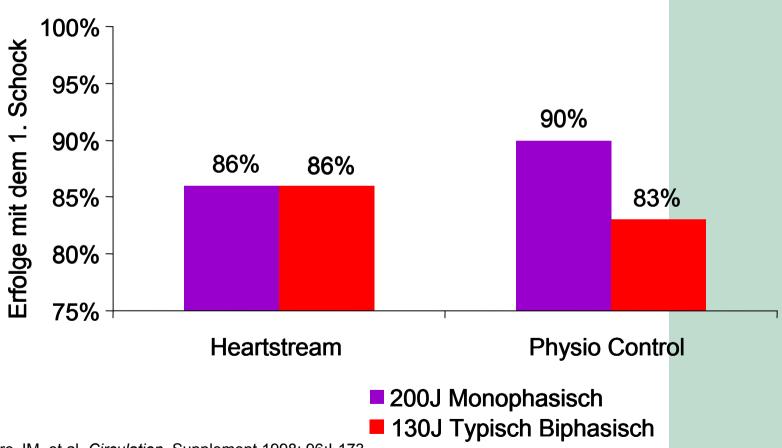
Defibrillationsschwelle mit Epikardelektroden (am Hund)

Konventionelle monophasische Impulsform (gedämpfter Sinusverlauf)


Strom (A)

40
30
20
10
-20
200 Joules bei 50 Ohm

0 4 8 12


Zeit (ms)

Typische biphasische Impulsform (abgeschnittener biphasischer Exponentialverlauf)

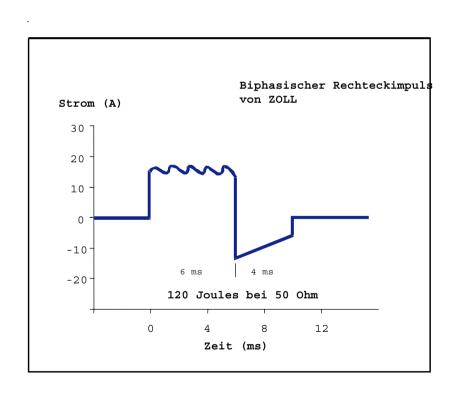
Vergleich zwischen typischer biphasischer und monophasischer Defibrillation

¹ Heere JM, et al. *Circulation*. Supplement 1998; 96:I-173.

² Bardy GH, et al. *Circulation*. 1996; 94: 2507-2514.

Grenzen typischer biphasischer Impulsformen

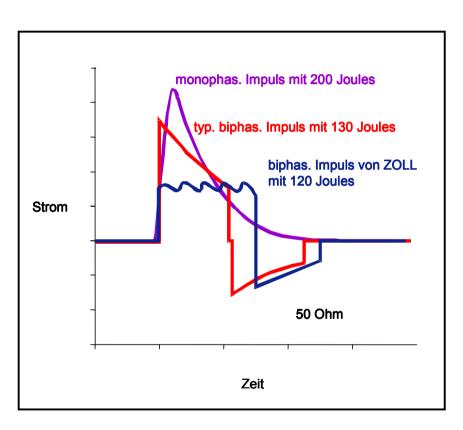
- Die Impulsform verändert sich, um den Patientenwiderstand auszugleichen.
- Es treten unerwünscht hohe Stromspitzen auf.

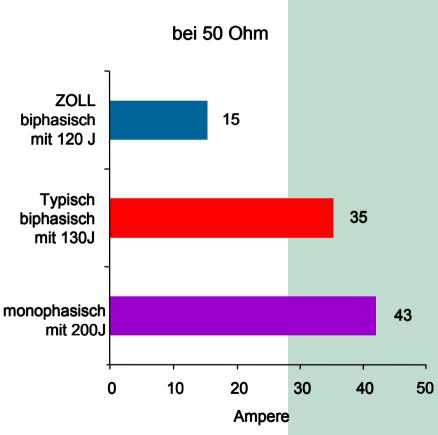

Der Lösungsansatz von ZOLL:

- Entwickeln einer überlegenen biphasischen Impulsform mit:
 - höherer klinischer Wirksamkeit
 - geringerer Energieabgabe an Patient
- Forschungen haben gezeigt:
 - stabile Impulsformen sind am effizientesten
 - spezielle Schaltkreise k\u00f6nnen unerw\u00fcnscht hohe Stromspitzen vermeiden

Biphasische Defibrillation der nächsten Generation

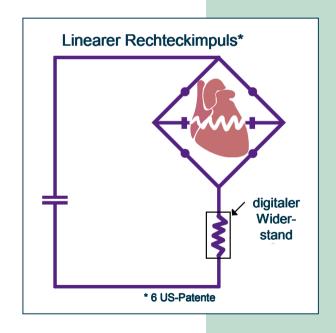
Biphasischer Rechteckimpuls von ZOLL




Vorteile:

- verringert hohe Stromspitzen am Herzmuskel!
- Impulsform und Impulsdauer bleiben gleich!

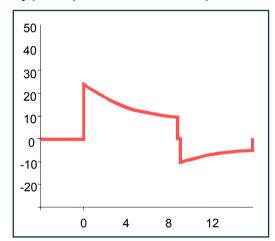
Wie werden hohe Stromspitzen vermieden?

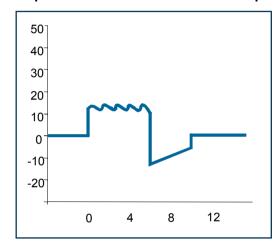

Wie Impulse mit stabiler Form und Dauer erreicht werden:

ZOLLs biphasischer Impuls berücksichtigt:

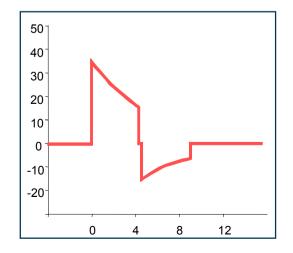
+ Defibrillatorwiderstand

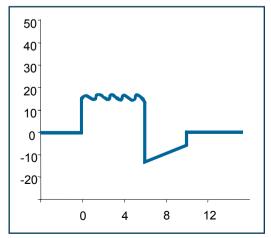
- Ist der Patientenwiderstand hoch, senkt der ZOLL-Defibrillator den internen Widerstand, um den Patienten mit optimaler Stromhöhe zu behandeln.
- Ist der Patientenwiderstand niedrig, erhöht das Gerät den internen Widerstand, um hohe Stromspitzen zu vermeiden.




Einfluß des Patientenwiderstandes auf die biphasischen Defibrillationsimpulse

Typ. biphasischer Impuls

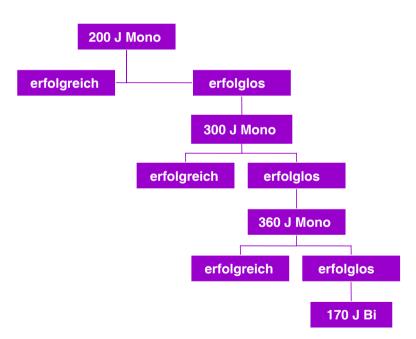

Biphasischer Rechteckimpuls von ZOLL

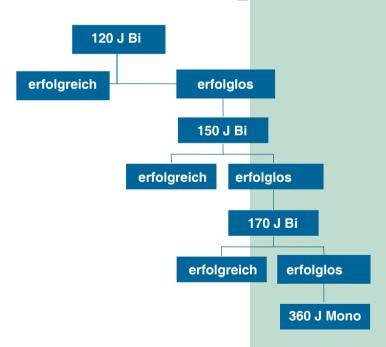

Patient mit hohem Widerstand

Patient mit niedrigem Widerstand

Studien über Wirksamkeit des biphasischen Rechteckimpulses

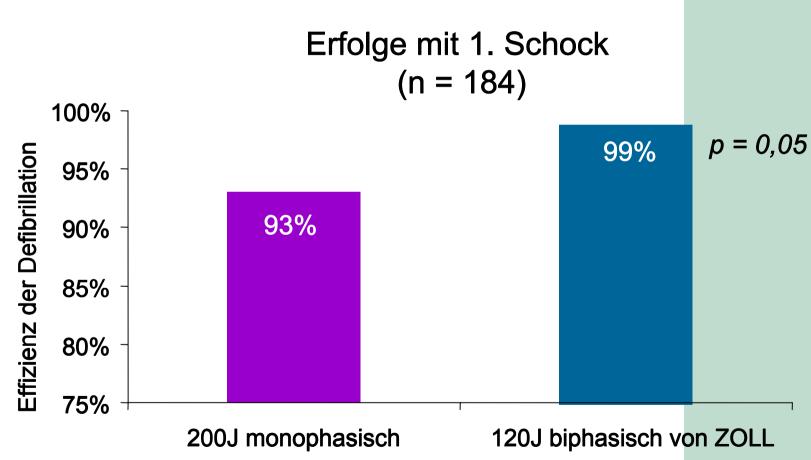
Randomisierte Studien an mehreren wichtigen Zentren:


- The New York Hospital Cornell Medical Center
- Universität von Pittsburgh
- Universität von Michigan
- Johns Hopkins Universität
- Cleveland Clinic
- Duke Universität
- Washington Hospital Center
- Temple Universität *
- Stanford Universität *


^{*} nur Kammerflimmern

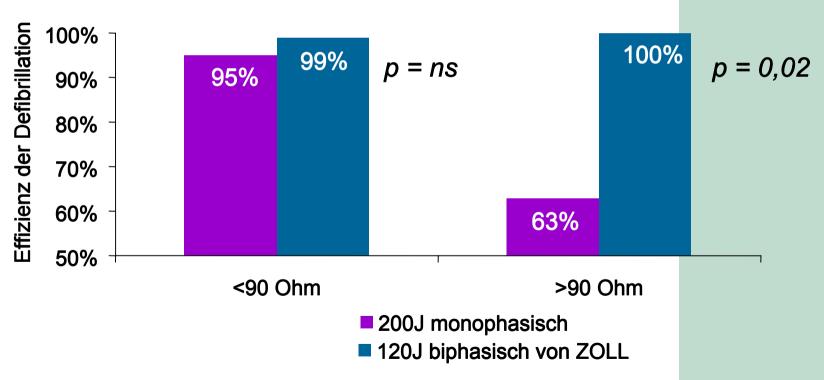
Ablaufschema der randomisierten Studie bei Kammerflimmern:

Monophasischer Impuls



Biphasischer Rechteckimpuls

Effektiver bei Kammerflimmern



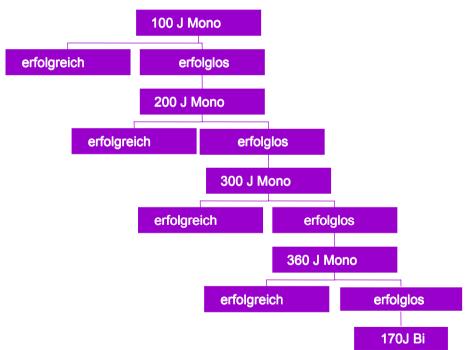
Mittal S., et al. Journal of the American College of Cardiology. 1999; 34: 5.

Überlegenheit bei Kammerflimmern bei Patienten mit hohem Widerstand

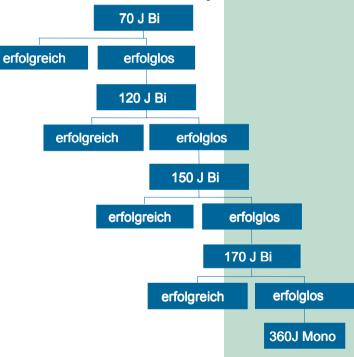
Erfolge mit 1. Schock:

Mittal S., et al. Journal of the American College of Cardiology. 1999; 34: 5.

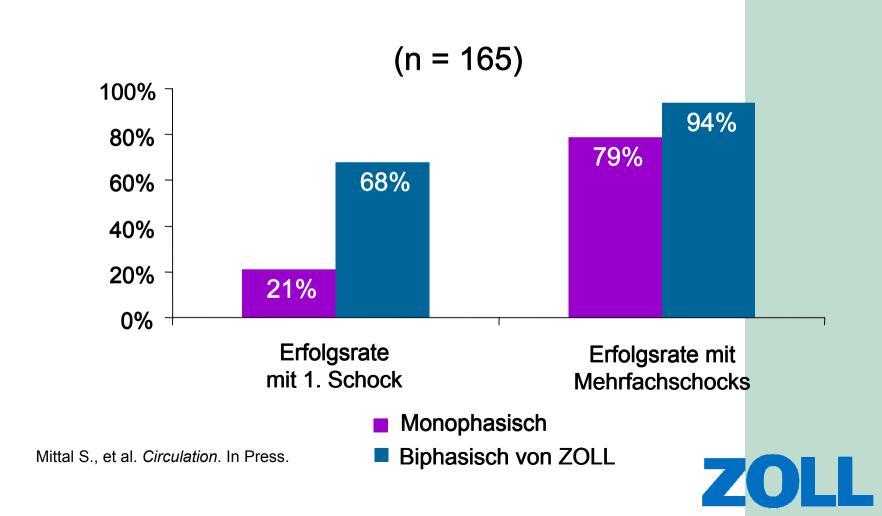
Kardioversion bei Vorhofflimmern (AF)


Angestrebte Ergebnisse:

- Höhere Effizienz bei niedigerer Energieabgabe
- Reduktion von invasiven Maßnahmen, Vermeidung von 720 J Schocks

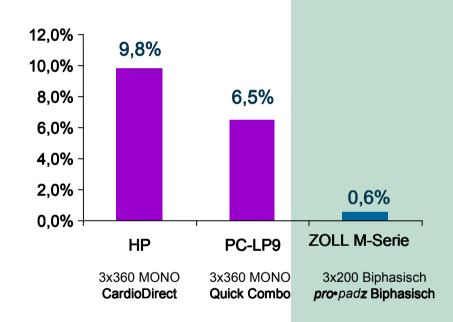


Ablaufschema der randomisierten Studie bei Vorhofflimmern:

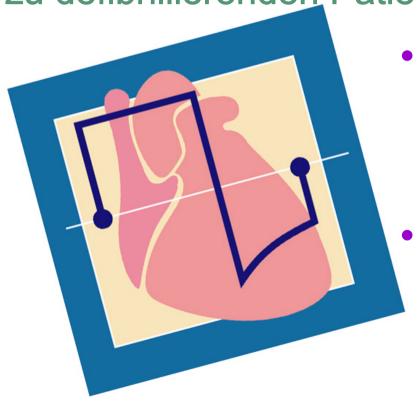


Biphasischer Rechteckimpuls

Überlegenheit bei Vorhof-flimmern


Geringere Verletzungen durch ZOLL-Technologie

Hautreaktionen 48 Stunden nach dem Schock



- Das komplette biphasische System von ZOLL:
 - Biphasische Rechteckimpulse
 - pro•padz Biphasic Flüssig-Gel Elektroden
 - optimale Plazierung der Elektroden

Biphasische ZOLL-Defibrillation

Wirksamer und erfolgreicher selbst bei schwer zu defibrillierenden Patienten. . .

- Defibrillation bei Kammerflimmern (VF) bei Patienten mit hohem Widerstand
- Kardioversion bei Vorhofflimmern (AF)

Anhänge

Patientenprofil der VF/VT-Studie

Anzahl der F	184	
Impulsform	biphasisch monophasisch	98 (53%) 86 (47%)
Alter (Jahre)		63 ± 14
Geschlecht	männlich weiblich	143 (78%) 41 (22%)
Körpergewicht (kg)		81 ± 15
LV-Auswurffraktion (%)		30 ± 15

Effizienz des Erst-Schocks bei VF (Kammerflimmern)

	abgegebene Energie (J)	Spannung (V)	Strom (A)	Impedanz (Ω)	Dauer der Arrhythmie (s)
Monophas. Impuls	205 ± 9	2166 ± 262	33 ± 7	66 ± 18	15 ± 7
(200 J)*	(167-219)	(1051-2593)	(17-56)	(25-114)	(3-51)
Biph.Recht- eckimpuls	129 ± 18	915 ± 168	14 ± 1	73 ± 18	17 ± 18
(120 J)*	(77-151)	(445-1260)	(11-18)	(30-112)	(3-134)
p-Wert		<0,0001	<0,0001	0,02	NS

^{*}abgegebene Energie bei 50 Ω Impedanz

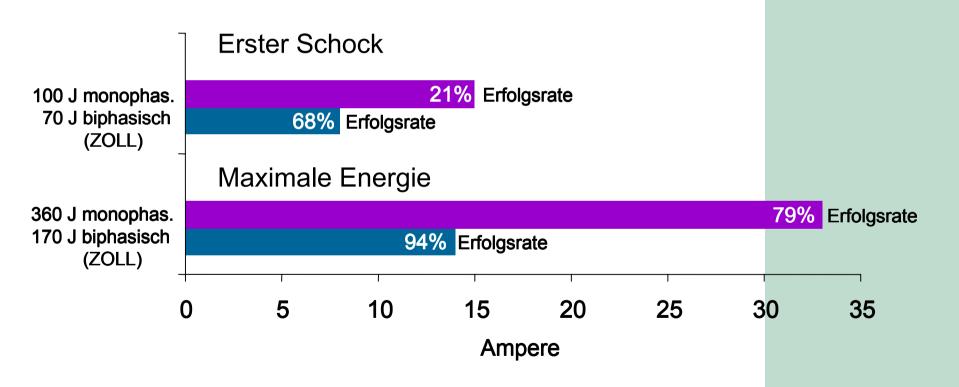
Patientenprofil der AF-Studie (Vorhofflimmern)

Anzahl der l	165	
Impulsform	biphasisch monophasisch	88 (53%) 77 (47%)
Alter (Jahre	66 ± 12	
Geschlecht	männlich weiblich	115 (70%) 50 (30%)
Gewicht (kg)		91 ± 23
LV-Auswurffraktion (%) Größe d. linken Ventrikels (cm)		50 ± 14 4,7 ± 0,9

Daten zur Erst-Schock-Erfolgsrate bei AF (Vorhofflimmern)

	abgegebene Energie (J)	Spannung (V)	Strom (A)	Impedanz (Ω)
Monophas. Impuls	105 ± 3	1550 ± 236	21 ± 4	76 ± 17
ППриіз	(94 - 112)	(715 - 1802)	(12 - 32)	(40 - 112)
Biphas. Rechteck- impuls	77 ± 7	733 ± 85	11 ± 1	78 ± 16
	(54 - 86)	(493 - 892)	(8 - 14)	(41 - 124)
p-Wert	<0,0001	<0,0001	<0,0001	

Erfolge durch Impulsformwechsel bei Patienten mit AF (Vorhofflimmern)


Ein interessantes Ergebnis . . .

- 8 der 16 Patienten, die monophasisch mit bis zu 360J nicht kardiovertiert werden konnten, wurden erfolgreich mit 170J biphasisch (ZOLL) kardiovertiert.
- Keiner der Patienten, die biphasisch nicht kardiovertiert werden konnten, wurde mit 360J monophasisch kardiovertiert.

Primäre Therapie	Erfolglos mit primärer Therapie	Erfolg nach Impulsformwechsel
Monophasisch Biphasisch	16 5	8 0

Kardioversion mit geringerem Strom

Mittal S., et al. Circulation. In Press.

AF Analyse

Parameter	erfolgreich	erfolglos	p-Wert
Gewicht (lbs)	195 ± 50	231 ± 34	0,002
Dauer AF (Tage)	143 ± 408	613 ± 1167	0,080
Größe linker Vorhof (cm)	$4,7 \pm 0,9$	$4,7 \pm 0,8$	0,904
LV-Auswurffraktion (%)	49 ± 15	48 ± 12	0,922
Transthorakale Impedanz (Ω) 75 ± 17	87 ± 12	0,005

Auswirkungen der Kardioversion auf die Haut

- Als Folge von Schocks mit hoher Energie können "Verbrennungen" auftreten.
- Dabei hängt der Verbrennungsgrad von Anzahl und Stärke der abgegebenen Schocks ab.
- Geringere abgegebene Energie und geringerer Strom reduzieren den Schweregrad.

